Copied to
clipboard

G = C42.423C23order 128 = 27

284th non-split extension by C42 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.423C23, C4.652- 1+4, C8⋊Q819C2, C4⋊C4.135D4, D4.Q825C2, C8.5Q85C2, D42Q811C2, D4⋊Q828C2, C2.32(D4○D8), C4.4D819C2, C4⋊C8.75C22, C22⋊C4.27D4, C4⋊C4.180C23, (C4×C8).117C22, (C2×C8).168C23, (C2×C4).439C24, C23.302(C2×D4), C4⋊Q8.123C22, C8⋊C4.32C22, C4.Q8.89C22, C2.49(D4○SD16), (C4×D4).121C22, (C2×D4).183C23, C4⋊D4.47C22, C41D4.70C22, C22.D824C2, C22⋊C8.66C22, C2.D8.109C22, D4⋊C4.53C22, C23.19D429C2, C23.46D413C2, (C22×C4).312C23, C22.699(C22×D4), C42.C2.26C22, C42.7C2216C2, C23.41C238C2, C42.29C227C2, C42⋊C2.169C22, C22.34C24.3C2, C2.87(C23.38C23), (C2×C4).563(C2×D4), (C2×C4⋊C4).654C22, SmallGroup(128,1973)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.423C23
C1C2C4C2×C4C22×C4C2×C4⋊C4C23.41C23 — C42.423C23
C1C2C2×C4 — C42.423C23
C1C22C42⋊C2 — C42.423C23
C1C2C2C2×C4 — C42.423C23

Generators and relations for C42.423C23
 G = < a,b,c,d,e | a4=b4=c2=e2=1, d2=a2, ab=ba, cac=dad-1=a-1, eae=ab2, cbc=dbd-1=b-1, be=eb, dcd-1=bc, ece=a2c, de=ed >

Subgroups: 340 in 166 conjugacy classes, 84 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4×C8, C8⋊C4, C22⋊C8, D4⋊C4, C4⋊C8, C4.Q8, C2.D8, C2×C4⋊C4, C42⋊C2, C4×D4, C4⋊D4, C4⋊D4, C22⋊Q8, C22.D4, C42.C2, C42.C2, C41D4, C4⋊Q8, C4⋊Q8, C42.7C22, D4⋊Q8, D42Q8, D4.Q8, C22.D8, C23.46D4, C23.19D4, C4.4D8, C42.29C22, C8.5Q8, C8⋊Q8, C22.34C24, C23.41C23, C42.423C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22×D4, 2- 1+4, C23.38C23, D4○D8, D4○SD16, C42.423C23

Character table of C42.423C23

 class 12A2B2C2D2E2F4A4B4C4D4E4F4G4H4I4J4K4L4M8A8B8C8D8E8F
 size 11114882244444888888444488
ρ111111111111111111111111111    trivial
ρ21111-1-1111-11-1-11-11-1-1111-11-1-11    linear of order 2
ρ311111-1-111111111-11-111-1-1-1-1-1-1    linear of order 2
ρ41111-11-111-11-1-11-1-1-1111-11-111-1    linear of order 2
ρ511111-1-11111111-1-1-1-1-1-1111111    linear of order 2
ρ61111-11-111-11-1-111-111-1-11-11-1-11    linear of order 2
ρ711111111111111-11-11-1-1-1-1-1-1-1-1    linear of order 2
ρ81111-1-1111-11-1-11111-1-1-1-11-111-1    linear of order 2
ρ9111111-111-1-11-1-1-111-1-111-11-11-1    linear of order 2
ρ101111-1-1-1111-1-11-111-11-111111-1-1    linear of order 2
ρ1111111-1111-1-11-1-1-1-111-11-11-11-11    linear of order 2
ρ121111-111111-1-11-11-1-1-1-11-1-1-1-111    linear of order 2
ρ1311111-1111-1-11-1-11-1-111-11-11-11-1    linear of order 2
ρ141111-111111-1-11-1-1-11-11-11111-1-1    linear of order 2
ρ15111111-111-1-11-1-111-1-11-1-11-11-11    linear of order 2
ρ161111-1-1-1111-1-11-1-11111-1-1-1-1-111    linear of order 2
ρ172222-200-2-22-22-22000000000000    orthogonal lifted from D4
ρ182222200-2-222-2-2-2000000000000    orthogonal lifted from D4
ρ192222200-2-2-2-2-222000000000000    orthogonal lifted from D4
ρ202222-200-2-2-2222-2000000000000    orthogonal lifted from D4
ρ214-4-440000000000000000220-22000    orthogonal lifted from D4○D8
ρ224-4-440000000000000000-22022000    orthogonal lifted from D4○D8
ρ234-44-4000-4400000000000000000    symplectic lifted from 2- 1+4, Schur index 2
ρ244-44-40004-400000000000000000    symplectic lifted from 2- 1+4, Schur index 2
ρ2544-4-400000000000000000-2-202-200    complex lifted from D4○SD16
ρ2644-4-4000000000000000002-20-2-200    complex lifted from D4○SD16

Smallest permutation representation of C42.423C23
On 64 points
Generators in S64
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 59 11 41)(2 60 12 42)(3 57 9 43)(4 58 10 44)(5 62 50 20)(6 63 51 17)(7 64 52 18)(8 61 49 19)(13 25 31 47)(14 26 32 48)(15 27 29 45)(16 28 30 46)(21 55 40 34)(22 56 37 35)(23 53 38 36)(24 54 39 33)
(1 4)(2 3)(5 19)(6 18)(7 17)(8 20)(9 12)(10 11)(13 14)(15 16)(21 54)(22 53)(23 56)(24 55)(25 48)(26 47)(27 46)(28 45)(29 30)(31 32)(33 40)(34 39)(35 38)(36 37)(41 58)(42 57)(43 60)(44 59)(49 62)(50 61)(51 64)(52 63)
(1 63 3 61)(2 62 4 64)(5 58 7 60)(6 57 8 59)(9 19 11 17)(10 18 12 20)(13 23 15 21)(14 22 16 24)(25 36 27 34)(26 35 28 33)(29 40 31 38)(30 39 32 37)(41 51 43 49)(42 50 44 52)(45 55 47 53)(46 54 48 56)
(1 25)(2 48)(3 27)(4 46)(5 22)(6 38)(7 24)(8 40)(9 45)(10 28)(11 47)(12 26)(13 41)(14 60)(15 43)(16 58)(17 53)(18 33)(19 55)(20 35)(21 49)(23 51)(29 57)(30 44)(31 59)(32 42)(34 61)(36 63)(37 50)(39 52)(54 64)(56 62)

G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,59,11,41)(2,60,12,42)(3,57,9,43)(4,58,10,44)(5,62,50,20)(6,63,51,17)(7,64,52,18)(8,61,49,19)(13,25,31,47)(14,26,32,48)(15,27,29,45)(16,28,30,46)(21,55,40,34)(22,56,37,35)(23,53,38,36)(24,54,39,33), (1,4)(2,3)(5,19)(6,18)(7,17)(8,20)(9,12)(10,11)(13,14)(15,16)(21,54)(22,53)(23,56)(24,55)(25,48)(26,47)(27,46)(28,45)(29,30)(31,32)(33,40)(34,39)(35,38)(36,37)(41,58)(42,57)(43,60)(44,59)(49,62)(50,61)(51,64)(52,63), (1,63,3,61)(2,62,4,64)(5,58,7,60)(6,57,8,59)(9,19,11,17)(10,18,12,20)(13,23,15,21)(14,22,16,24)(25,36,27,34)(26,35,28,33)(29,40,31,38)(30,39,32,37)(41,51,43,49)(42,50,44,52)(45,55,47,53)(46,54,48,56), (1,25)(2,48)(3,27)(4,46)(5,22)(6,38)(7,24)(8,40)(9,45)(10,28)(11,47)(12,26)(13,41)(14,60)(15,43)(16,58)(17,53)(18,33)(19,55)(20,35)(21,49)(23,51)(29,57)(30,44)(31,59)(32,42)(34,61)(36,63)(37,50)(39,52)(54,64)(56,62)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,59,11,41)(2,60,12,42)(3,57,9,43)(4,58,10,44)(5,62,50,20)(6,63,51,17)(7,64,52,18)(8,61,49,19)(13,25,31,47)(14,26,32,48)(15,27,29,45)(16,28,30,46)(21,55,40,34)(22,56,37,35)(23,53,38,36)(24,54,39,33), (1,4)(2,3)(5,19)(6,18)(7,17)(8,20)(9,12)(10,11)(13,14)(15,16)(21,54)(22,53)(23,56)(24,55)(25,48)(26,47)(27,46)(28,45)(29,30)(31,32)(33,40)(34,39)(35,38)(36,37)(41,58)(42,57)(43,60)(44,59)(49,62)(50,61)(51,64)(52,63), (1,63,3,61)(2,62,4,64)(5,58,7,60)(6,57,8,59)(9,19,11,17)(10,18,12,20)(13,23,15,21)(14,22,16,24)(25,36,27,34)(26,35,28,33)(29,40,31,38)(30,39,32,37)(41,51,43,49)(42,50,44,52)(45,55,47,53)(46,54,48,56), (1,25)(2,48)(3,27)(4,46)(5,22)(6,38)(7,24)(8,40)(9,45)(10,28)(11,47)(12,26)(13,41)(14,60)(15,43)(16,58)(17,53)(18,33)(19,55)(20,35)(21,49)(23,51)(29,57)(30,44)(31,59)(32,42)(34,61)(36,63)(37,50)(39,52)(54,64)(56,62) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,59,11,41),(2,60,12,42),(3,57,9,43),(4,58,10,44),(5,62,50,20),(6,63,51,17),(7,64,52,18),(8,61,49,19),(13,25,31,47),(14,26,32,48),(15,27,29,45),(16,28,30,46),(21,55,40,34),(22,56,37,35),(23,53,38,36),(24,54,39,33)], [(1,4),(2,3),(5,19),(6,18),(7,17),(8,20),(9,12),(10,11),(13,14),(15,16),(21,54),(22,53),(23,56),(24,55),(25,48),(26,47),(27,46),(28,45),(29,30),(31,32),(33,40),(34,39),(35,38),(36,37),(41,58),(42,57),(43,60),(44,59),(49,62),(50,61),(51,64),(52,63)], [(1,63,3,61),(2,62,4,64),(5,58,7,60),(6,57,8,59),(9,19,11,17),(10,18,12,20),(13,23,15,21),(14,22,16,24),(25,36,27,34),(26,35,28,33),(29,40,31,38),(30,39,32,37),(41,51,43,49),(42,50,44,52),(45,55,47,53),(46,54,48,56)], [(1,25),(2,48),(3,27),(4,46),(5,22),(6,38),(7,24),(8,40),(9,45),(10,28),(11,47),(12,26),(13,41),(14,60),(15,43),(16,58),(17,53),(18,33),(19,55),(20,35),(21,49),(23,51),(29,57),(30,44),(31,59),(32,42),(34,61),(36,63),(37,50),(39,52),(54,64),(56,62)]])

Matrix representation of C42.423C23 in GL8(𝔽17)

071000000
0512120000
5512120000
127000000
000065162
0000611161
00001151112
0000116116
,
10000000
01000000
00100000
00010000
000011500
000011600
000000115
000000116
,
071000000
051250000
1251250000
127000000
000065162
000001101
00001151112
000001606
,
1601500000
00110000
10100000
16161600000
00000700
000012000
00000007
000000120
,
1615000000
01000000
01010000
016100000
00000010
00000001
00001000
00000100

G:=sub<GL(8,GF(17))| [0,0,5,12,0,0,0,0,7,5,5,7,0,0,0,0,10,12,12,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,0,6,6,1,1,0,0,0,0,5,11,15,16,0,0,0,0,16,16,11,11,0,0,0,0,2,1,12,6],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,15,16,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,15,16],[0,0,12,12,0,0,0,0,7,5,5,7,0,0,0,0,10,12,12,0,0,0,0,0,0,5,5,0,0,0,0,0,0,0,0,0,6,0,1,0,0,0,0,0,5,11,15,16,0,0,0,0,16,0,11,0,0,0,0,0,2,1,12,6],[16,0,1,16,0,0,0,0,0,0,0,16,0,0,0,0,15,1,1,16,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,7,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,7,0],[16,0,0,0,0,0,0,0,15,1,1,16,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0] >;

C42.423C23 in GAP, Magma, Sage, TeX

C_4^2._{423}C_2^3
% in TeX

G:=Group("C4^2.423C2^3");
// GroupNames label

G:=SmallGroup(128,1973);
// by ID

G=gap.SmallGroup(128,1973);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,120,758,219,100,675,1018,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=c^2=e^2=1,d^2=a^2,a*b=b*a,c*a*c=d*a*d^-1=a^-1,e*a*e=a*b^2,c*b*c=d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=b*c,e*c*e=a^2*c,d*e=e*d>;
// generators/relations

Export

Character table of C42.423C23 in TeX

׿
×
𝔽